Abstract

Previous studies demonstrated that hen erythrocytes have an inoperative, latent sphingomyelinase which is activated when the cells are hemolyzed in a hypotonic medium. Within minutes after hemolysis about 60–80% of the sphingomyelin (SPM) of the RBC “ghost” membrane was hydrolyzed. In this paper, expression of sphingomyelinase activity was further investigated. (1) The percentage of total SPM hydrolyzed depended on the volume of the hypotonic hemolyzing buffer. Thus, suspending the erythrocytes in 4 vol of the buffer resulted in clumping of the hemolyzed “ghosts” and no hydrolysis of SPM. In comparison, suspension in 19 vol of the hypotonic buffer showed no clumping and sphingomyelinase activity was fully expressed. But centrifugation of the latter or, alternatively, addition of concanavalin A induced clumping and elimination of sphingomyelinase activity. (2) Hen RBC could also be hemolyzed in an isotonic medium in the presence of Triton X-100, mellitin, halothane, and phospholipase C. Activation of the latent sphingomyelinase occurred at concentrations of these reagents which caused cell lysis. (3) Hen RBC were dispersed in an isotonic medium containing glutaraldehyde (0.1%) or formaldehyde (10%). This rendered the cells resistant to hemolysis, even when subsequently dispersed in a hypotonic medium or water. But incubation of the “fixed” cells in a hypotonic or isotonic medium activated the enzyme, resulting in hydrolysis of 60% of the cellular SPM. In contrast, when glutaraldehyde was included in the hypotonic buffer, hemolysis occurred but sphingomyelinase activity was eliminated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.