Abstract

A major energy challenge currently is the depletion of global oil reserves which is gradually resulting in the decline of conventional diesel production. Several alternative fuels and renewable energy sources have been proffered with biodiesel constituting a promising option. Biodiesel has garnered increasing attention because it is renewable, biodegradable, non-toxic, and it is characterized by low carbon monoxide particulate and hydrocarbon emissions compared to the conventional diesel. In recent times, several scientific writings have documented the utilization of Moringa oleifera as feed stock for biodiesel production. Moringa oleifera (horseradish) is a multipurpose tree species and one of the most widely cultivated crops in tropical and sub-tropical areas of the globe. Databases used for this review include Google Scholar, Scopus, WorldCat.org, Microsoft Academic and Science Direct. A total of 216 articles were retrieved and 18 studies were ultimately retained after qualitative analysis. The analytic output shows the seed oil has favorable characteristics for use as biodiesel. The fatty acid composition of the oil makes it suitable for both edible and non-edible applications. Also, the percentage of oleic acid (70%) in Moringa oil is quite high compared to other crops which possess about 40% oleic acid. Moringa seed oil exhibit a high oxidative stability and its thermal stability exceeds other oil crops like sunflower oil, soybean oil amongst others. Biodiesel produced from M. oleifera seed oil exhibit enhanced oxidative ability, high cloud point and a higher cetane number of approximately 67 than for most biodiesels. Moringa oleifera biodiesel can be stored for a long period of time and it is safe for transport.

Highlights

  • The geometric rise in world population has resulted in a subsequent increase in the demand for energy which can lead to insufficient energy supply [1]

  • Moringa oleifera biodiesel can be stored for a long period of time and it is safe for transport

  • This review has highlighted the many possibilities of Moringa oleifera oil as a feedstock for biodiesel production

Read more

Summary

Introduction

The geometric rise in world population has resulted in a subsequent increase in the demand for energy which can lead to insufficient energy supply [1]. Fossil fuels are non-renewable energy sources and limited in supply. It poses a lot of health and environmental problems. These energy resources are not evenly distributed around the world; it is more concentrated in some countries than others. Countries not having these resources are forced to import crude oil, thereby encountering challenges accompanied by importation such as foreign exchange crisis. These countries will seek for alternative fuels that can be produced from indigenous materials available within their country [4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.