Abstract

Best linear unbiased prediction (BLUP) procedures were used to separate genetic merit from environment8i effects on 205&y weight (205-d wt) of calves produced by cows grazing 2 pasture systems. Phenotypic measures of 205-d wt were statistically partitioned into genetic effects (breeding value) and environmental effects. Means were regressed on year of birth of c?lf. Analysis of covariance was used to test difference in slope and elevation (means) of the regression lines. The continuously grazed pasture (CC) produced higher 205-d wt than did the rotationally grazed pastures (RG) (P<.lO). Rate of change in 205-d wt was similar in the 2 grazing systems. Genetic merit was similar among the animals in the 2 grazing systems. The rate of change per year in genetic merit (genetic trend) was also similar. Means tended to vary sharply from year to year, indicating inequality of genetic merit should be taken into account in this type of data. Mean environmental effects resulted in greater (PC.10) 205-d weight in CG than in RG. Rate of change of environmental quality was similar in the 2 systems. These results indicate, from the animals perspective, the RG system did not improve productivity when compared to CG. The CG system was of higher nutritional quality, but the rate of change was similar to that of the RG system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.