Abstract

The crop Water Footprint (WF) can provide a comprehensive knowledge of the use of water through the demarcation of the amount of the water consumed by different crops. The WF has three components: green (WFg), blue (WFb) and grey (WFgr) water footprints. The WFg refers to the rainwater stored in the root zone soil layer and is mainly utilized for agricultural, horticultural and forestry production. The WFb, however, is the consumptive use of water from surface or groundwater resources and mainly deals with irrigated agriculture, industry, domestic water use, etc. While the WFgr is the amount of fresh water required to assimilate pollutants resulting from the use of fertilizers/agrochemicals. This study was conducted on six agricultural fields in the Eastern region of Saudi Arabia, during the period from December 2015 to December 2016, to investigate the spatiotemporal variation of the WF of silage maize and carrot crops. The WF of each crop was estimated in two ways, namely agro-meteorological (WFAgro) and remote sensing (WFRS) methods. The blue, green and grey components of WFAgro were computed with the use of weather station/Eddy covariance measurements and field recorded crop yield datasets. The WFRS estimated by applying surface energy balance principles on Landsat-8 imageries. However, due to non-availability of Landsat-8 data on the event of rainy days, this study was limited to blue component (WFRS-b). The WFAgro of silage maize was found to range from 3545 m3 t-1 to 4960 m3 t-1; on an average, the WFAgro-g, WFAgro-b, and WFAgro-gr are composed of < 1%, 77%, and 22%, respectively. In the case of carrot, the WFAgro ranged between 297 m3 t-1 and 502 m3 t-1. The WFAgro-g of carrot crop was estimated at <1%, while WFAgro-b and WFAgro-gr was 67% and 32%, respectively. The WFAgro-b is occupied as a major portion in WF of silage maize (77%) and carrot (68%) crops. This is due to the high crop water demand combined with a very erratic rainfall, the irrigation is totally provided using groundwater delivered by center pivot irrigation systems. On the other hand, the WFRS-b estimated using Landsat-8 data was varied from 276 (±73) m3 t-1 (carrot) and 2885 (±441) m3 t-1 (silage maize). The variation (RMSE) between WFRS-b and WFAgro-b was about 17% and 14% for silage maize and carrot crops, respectively.

Highlights

  • A significant amount of water is being consumed in the industrial and domestic sectors, the agricultural sector is considered as the largest consumer of water with 80% of water consumption worldwide [1]

  • Electrical conductivity (EC) can provide accurate estimates of the number of salts presented in soil and water

  • A field study was conducted to investigate the Water Footprint (WF) for carrot and silage maize crops cultivated in Saudi Arabia during the period from December 2015 to December 2016

Read more

Summary

Introduction

A significant amount of water is being consumed in the industrial and domestic sectors, the agricultural sector is considered as the largest consumer of water with 80% of water consumption worldwide [1]. Unless the current water management practices become dramatically wiser; many parts of the world will face rigorous competition for water among agriculture, energy, industry and civil activities [2]. Water scarcity, which refers to the lack of satisfactory available water resources to meet the water needs within a particular region, can be classified into two types, physical and economic [3]. Water scarcity is considered as one of the most critical problems facing many societies worldwide, and is directly interlinked to the food sector as over 80% of the world water withdrawal is to meet the requirements of the increasing population and the continuing development [4]. Many countries are forced to import food from abroad to meet the demand of its own people

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call