Abstract

Previous studies (H.S. Marsden, L. Haarr, and C.M. Preston, J. Virol. 46:434-445, 1983) have shown that at least three polypeptides, with molecular weights of 43,000, 39,000, and 38,000, are encoded by the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) gene. It has been suggested that the 39,000- and 38,000-molecular-weight polypeptides arise from preinitiation complexes bypassing the first and second AUG codons before commencement of translation since, according to previous work (M. Kozak, Nucleic Acids Res. 9:5233-5252, 1981), these codons are not of the most efficient structure for initiation. This possibility was investigated by using specific herpes simplex virus mutants with alterations in the TK gene. Mutant TK4 has an amber mutation between the first and second AUG codons, whereas mutant delta 1 has a deletion which removes the first AUG codon but leaves other AUG codons, as well as transcriptional promoter sequences, intact. Both mutants synthesized only the 39,000- and 38,000-molecular-weight polypeptides, and the amounts produced were normal in TK4-infected cells but increased in delta 1-infected cells. Furthermore, the levels of TK produced after infection with the mutant viruses correlated with the amounts of the 39,000- and 38,000-molecular-weight polypeptides synthesized. The 43,000-, 39,000-, and 38,000-molecular-weight polypeptides were shown to be related by their positive reaction with anti-TK serum in both immunoprecipitation and immunoblotting experiments. The production of the 39,000- and 38,000-molecular-weight polypeptides through bypassing of the first AUG codon was examined by hybrid arrest experiments with a DNA fragment complementary to only 50 bases at the 5' terminus of TK mRNA. This fragment arrested the synthesis of the 30,000- and 38,000-molecular-weight polypeptides when annealed to mRNA from wild-type HSV-1- or TK4-infected cells, showing that those polypeptides arise from an mRNA initiated upstream from the first AUG codon. mRNA from cells infected with mutant delta 1, which lacks DNA sequences upstream from the first AUG, was not affected by the 50-base-pair fragment. The data therefore confirm that three polypeptides encoded by the HSV-1 TK gene arise by differential use of in-phase AUG codons for the initiation of protein synthesis. This mechanism for the production of related but distinct polypeptides has not previously been demonstrated in a eucaryotic system, and the implications for the regulation of TK enzyme activities are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.