Abstract

Wastewater treatment plants (WWTPs) are a significant energy consumer, yet there are several opportunities for implementing on-site power generation systems. Within the treatment process, the high flow rate of effluent is produced and discharged to a nearby water body by gravity. Thus, hydroturbines can be utilized to generate power in such an application due to a difference in elevation and high flow rate. This paper presents a case study of introducing a hydroturbine in a WWTP in Wisconsin and evaluating the power output in addition to determining the energy savings. The WWTP considered in this study has an effluent flow rate of 190 MGD (million gallons per day) and elevation difference of 3 m (10 ft) between the final stage of treatment and the discharge point. Based on the parameters above; hubless rim-drive Kaplan type hydroturbine (RDT) is the optimal choice to be used in such an application. The RDT is designed and optimized by using in-house code. A computational fluid dynamics (CFD) software is applied to evaluate the performance of the proposed model, and the system is simulated through homer software to validate the results generated by the CFD. The expected savings is estimated to be 1564 MWh/yr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.