Abstract
Abstract Hydrothermal liquefaction derived hydrochar produced from industrial paper sludge was used as an adsorbent to remove phenol derivatives from an industrial wastewater stream. Removal efficiency for phenol was determined using synthetic solutions (10–150 ppm) using batch adsorption experiments at a constant solution pH (8), temperature (25 ± 2 °C) and rotary speed (150 rpm). The adsorption of phenol onto hydrochar followed a Freundlich isotherm and could be described with pseudo-second-order kinetic models. Analysis of the adsorption mechanisms showed that particle film mass transport was the rate-determining step in the adsorption process. A COD removal efficiency of 31 ± 1% was achieved for the industrial wastewater stream. All phenol components in the wastewater stream could be removed, but not all organic acids and cyclic ketones. The performance of the paper sludge-based hydrochar compared well with that of activated carbon (44% COD removal). The final phenol concentration in the wastewater stream was below the acceptable phenol concentration for industrial effluents (1 mg/L). The results show that paper sludge can be converted to a valuable marketable commodity that could reduce waste management costs for a paper mill, while also reducing the cost of expensive adsorbents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.