Abstract

CuO-CeO(2) mixed oxide catalysts with 10, 15, and 20 mol % CuO content were prepared by the hard template method using KIT-6 silica as a template. The applied synthesis method yields solids with BET surface area in excess of 147 m(2)/g, highly porous nanocrystalline CeO(2) morphology and dispersion of CuO phase between 28 and 40%, corresponding to CuO particle size between 1.3 and 1.9 nm. Increasing the CuO content caused a decrease in dispersion of this phase and a further decrease of surface acid site abundance, determined by NH(3) chemisorption/TPD method, but improved the reducibility extent of CeO(2) (14.5, 16.1 and 24.5% for CuCe10, CuCe15, and CuCe20 catalyst, respectively) and oxygen mobility of prepared powders. It was discovered during ethanol steam re-forming experiments that increasing CuO content is favorable in terms of ethanol conversion but also causes quicker catalyst deactivation, primarily as a result of sintering and loss of CuO dispersion. Reaction temperatures in excess of 550 degrees C strongly promoted ethanol dehydratation reaction, leading to a rise in methane production and extensive coking of the catalyst surface. Coking was slower in the case of CuO-CeO(2) catalysts with a higher CuO content as a result of lower acid site abundance and more pronounced oxygen mobility. Temperatures in excess of 450 degrees C are required for any noticeable CO(2) and CH(4) conversion in methane dry re-forming reaction over CuO-CeO(2) materials. The examined materials displayed steady performance during stability tests at a reaction temperature of 650 degrees C, with catalysts containing 15 and 20 mol % CuO exhibiting the highest activity. Additionally, very low amounts of carbon were deposited on spent catalyst samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call