Abstract

The fatty acid composition of Pieris brassicae was measured from larvae reared on four different diets. Pieris can alter the composition of fatty acids in the diet through selective incorporation and synthesis. Oleate is preferentially accumulated on artificial diets (15·9 per cent in diet, 43·8 per cent in neutral lipid (NL) of fifth instar larvae), but not equally on natural diets (18·1 per cent in Brassica napus, 25·6 per cent in the NL of fifth instar larvae). Incorporation of linolenate appears to depend on the concentration of both linolenate and linoleate in the diet. With dietary levels of 35·7% linolenate and 32·2% linoleate, fifth instar larvae contain 12·2 and 16·0 per cent, respectively, of these acids. With 45·8% linolenate and 12·5% linoleate in the diet, fifth instar larvae contain 44·1 and 11·6 per cent of these acids, respectively, in the NL. Palmitoleate is actively synthetized on the artificial diets; with trace amounts of dietary palmitoleate, fifth instar larvae have 9·3 per cent of this acid in the NL. Pieris regulates the uptake of linoleate from the diet at the intestinal wall as was shown by linoleic acid-1- 14C, and is unable to convert dietary linoleate to any of the 18-carbon analogues. The female apparently accumulates linolenate into egg phospholipids on the artificial diet, but in general the fatty acid composition of the eggs resembles that of the fat body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.