Abstract

ABSTRACT The blue light hazard (BLH) and luminous efficacy of a source () are associated with the photobiological safety and energy saving of light-emitting diodes (LEDs), respectively. In this study, we used genetic algorithm (GA) to optimize the BLH, , and color rendering parameters of five-chip hybrid white LEDs. Based on the optimal results, we used five-chip LEDs to obtain the hybrid white light. Their peak wavelengths were 461.5 (blue), 523.9 (green), 588.2 (orange), 643.3 (red), and 694.2 nm (far-red), respectively. In practice, the blue light hazard efficiency of radiation (BLHER) of the hybrid white light was less than 0.10, which was lower than half of the most common light sources. The ranged from 51.6 to 115.6 lm/W at correlated color temperature (CCT) from 2700 to 6500 K. On average, the CIE general color rendering index (Ra), CIE special color rendering index for the ninth deep red test sample (R9), ANSI/IES TM-30 color fidelity index (Rf), and color gamut index (Rg) of hybrid white light were 91.3, 87.8, 83.3, and 96.7, respectively. The melanopic efficacy of luminous radiation () was tunable in the range of 0.60 to 1.35 mW/lm. These results demonstrated that we used far-red LEDs to fabricate white light with low BLH and relatively high efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.