Abstract

ABSTRACT Objectives Drug delivery systems typically show limited access to the lung interstitium and absorption after pulmonary delivery. The aim of this work was to undertake a proof-of-concept investigation into the potential of employing endogenous albumin and albumin absorption mechanisms in the lungs to improve lung interstitial access and absorption of inhaled drug delivery systems that bind albumin. Methods The permeability of human albumin (HSA) through monolayers of primary human alveolar epithelia, small airway epithelia, and microvascular endothelium were investigated. The pulmonary pharmacokinetics of bovine serum albumin (BSA) was also investigated in efferent caudal mediastinal lymph duct-cannulated sheep after inhaled aerosol administration. Results Membrane permeability coefficient values (Papp) of HSA increased in the order alveolar epithelia<small airway epithelia<microvascular endothelium, where the permeability of HSA through small airway and microvascular endothelia were approximately 4- and 28-fold higher than alveolar epithelia, respectively. Only 6.5% of the delivered BSA aerosol dose was absorbed from the lungs of sheep over 5 days, although half of the absorbed dose was absorbed via the lung lymph. Conclusion Drug delivery systems that bind endogenous albumin may show a modest increase in lung permeability and absorption after inhaled delivery compared to systems that do not efficiently bind albumin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.