Abstract

The management of abundant drinking water treatment sludge (DWTS) in landfill remains an important issue. The reuse of DWTS as construction material could contribute to the development of greener concrete product and to mitigating the detrimental environment effect from excessive production of DWTS. This paper investigates the potential of using DWTS as sand replacement in Concrete Paving Blocks (CPB). Five CPB mixtures were designed and the replacement ratios of sand by DWTS were 0%, 5%, 10%, 15%, and 20%, by weight. Properties of CPB such as compressive strength, water absorption, abrasion resistance, sulfate attack and metal leachability were determined. The results indicated that above 10% of DWTS, the replacement was detrimental to such properties of the CPB. Microstructure analysis proved the addition of DWTS could result in ettringite formation and the interfacial transition zone (ITZ) between the cement matrix and DWTS was more porous than that of sand. In addition, the metal leachability test of CPB demonstrated that the addition of high-copper DWTS into CPB was safe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.