Abstract

Chest radiography is a widely used diagnostic imaging procedure in medical practice, which involves prompt reporting of future imaging tests and diagnosis of diseases in the images. In this study, a critical phase in the radiology workflow is automated using the three convolutional neural network (CNN) models, viz. DenseNet121, ResNet50, and EfficientNetB1 for fast and accurate detection of 14 class labels of thoracic pathology diseases based on chest radiography. These models were evaluated on an AUC score for normal versus abnormal chest radiographs using 112120 chest X-ray14 datasets containing various class labels of thoracic pathology diseases to predict the probability of individual diseases and warn clinicians of potential suspicious findings. With DenseNet121, the AUROC scores for hernia and emphysema were predicted as 0.9450 and 0.9120, respectively. Compared to the score values obtained for each class on the dataset, the DenseNet121 outperformed the other two models. This article also aims to develop an automated server to capture fourteen thoracic pathology disease results using a tensor processing unit (TPU). The results of this study demonstrate that our dataset can be used to train models with high diagnostic accuracy for predicting the likelihood of 14 different diseases in abnormal chest radiographs, enabling accurate and efficient discrimination between different types of chest radiographs. This has the potential to bring benefits to various stakeholders and improve patient care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.