Abstract

An Escherichia coli mutant defective in high-affinity D-ribose transport is able to utilize the sugar as a sole carbon source, suggesting that other transport systems for D-ribose exist. In order to search for such transporters, transposon mutagenesis was carried out in an rbsB-negative strain containing ribokinase (rbsK) for sugar phosphorylation. Insertions showing an enhanced ribose growth were isolated and mapped in xylA and its promoter region. The mutations increased not only the ribose uptake but also the expression of xylFGH encoding an ABC (ATP-binding cassette)-type transporter for D-xylose. Secondary mutations abolishing the ribose-utilizing phenotype were obtained both in the xylFG genes coding for the xylose high-affinity transporter and in xylR that is required for the xyl gene expression. Ribose uptake was also reduced by the secondary mutations. An overexpression of xylFGH under Ptrc promoter supported enhanced growth on ribose. These results indicate that D-ribose can be transported through the XylFGH transporter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.