Abstract

The present work reports the fabrication of anion-induced electrical devices with Zn(ii) metal-organic frameworks. The essence of our electronic device fabrication is to utilize the anionic species entrapped inside of the three-dimensional network of the MOFs for charge transportation. The idea is to generate MOFs as a host-guest system with encapsulated anions or anion-solvent clusters as guests and a cationic yet insulating three-dimensional framework as the host. Accordingly, we have synthesized two Zn(ii) MOFs using a neutral bispyrazole-based ligand, which results in a cationic chassis with substantial void space and porous channels inside the network. For both MOFs, the porous channels are occupied by infinitely hydrogen bonded networks of anions and anion-solvent clusters. This provides an excellent platform for anionic species-induced charge transportation and improved electrical conductivity. Indeed, the impedance spectroscopy data and current density-voltage (J-V) characteristics of the fabricated electrical devices further vindicate our idea. The current-voltage measurements clearly indicate the usefulness of modified host-guest-type MOFs for electronic device fabrication with corroborating conductivity values of 8.71 × 10-5 S m-1 and 5.79 × 10-4 S m-1 for compound 1 and compound 2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.