Abstract

Complex-valued interference signals (CVISs) of a white-light scanning interferometer (WLSI) and a spectrally resolved interferometer (SRI) are obtained from their real-valued interference signals through Fourier transform. First the phase distribution in the CVIS of the SRI indicates a dispersion phase caused by two sides of unequal length in a cubic beam splitter, and the magnitude of the dispersion phase changes linearly along a horizontal direction of the beam splitter. Next the dispersion phase with a different magnitude is subtracted from the spectral phase in Fourier transform of the CVIS of the WLSI. Through inverse Fourier transform of this spectral distribution, a dispersion-free CVIS is obtained, and the position of zero phase nearest to the position of amplitude maximum provides a surface profile measured accurately with an error less than 4nm after 2π corrections, while a position calculated by the linear component of the spectral phase causes measurement error less than 12nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.