Abstract

Lignocellulosic structures obtained from agricultural wastes can re-design sustainable packaging materials. The present study investigated the utilization of lignocellulose (LS), alkali lignin (L) and hydroxymethylated (modified) lignin (ML), separated from chestnut shells in alginate (AL) films at 100 and 200 mg g-1 (10% and 20%, w/w based on AL), as reinforcing agents. Lignin modification and concentration effects on the AL films were characterized by water vapor permeability (WVP), as well as morphological, mechanical, optical, thermal and active properties. Fourier transform infrared spectroscopy results showed that extracted L and LS had different structures, and the modification of L resulted in a peak shift and a decrease in peak intensities between 1250 and 800 cm-1 . The antioxidant and antimicrobial activity tests showed that films containing L had higher activity values (P < 0.05). WVP of the films containing ML was the lowest (P < 0.05) and the results revealed that 20% (w/w) concentration had an adverse effect on the WVP of films. The addition of L, LS and ML increased the tensile strength, elastic modulus and thermal properties (P < 0.05) compared to AL control films. With an increasing concentration, films containing L-based structures showed higher opacity and relatively lower L* values (P < 0.05). These results show that the addition of lignin to biopolymers is a promising method for improving the properties of biopolymers and providing functional attributes. LS had no or little effect on the film properties; however, the modification of L had the advantage of enhancing WVP and thermal properties at the same time as showing a decrease in functional properties compared to L. © 2022 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call