Abstract

In this work, the outdoor pilot-scale production of marine microalga Nannochloropsis gaditana using centrate from the anaerobic digestion of municipal wastewater was evaluated. For this, outdoor semi-continuous cultures were performed in both tubular and raceway reactors mixing seawater with different centrate percentages (15%, 20% and 30%) as culture medium. It was demonstrated that N. gaditana can be produced using centrate as the only nutrient source but at percentages below 30%. At this level inhibition was caused by an excess of ammonium in both photobioreactors, as confirmed by chlorophyll fluorescence and average irradiance data, thus reducing productivity. At 15% and 20% centrate percentages, biomass productivity was equal to that measured when using Algal culture medium, of 0.48 and 0.10gL−1day−1 for tubular and raceway reactors respectively. During the experiments nitrogen depuration decreased from 85% to 63% in tubular reactors with the increase of centrate percentage in the culture medium and the decrease in biomass productivity, while in raceway reactors an opposite behavior was observed due to ammonia stripping from the cultures. Phosphorus depuration from the culture medium was 85% whatever the system used and the centrate percentage in the culture medium indicating a phosphorus limitation into the cultures. By supplying additional phosphorus, to achieve an N:P ratio of 5, it was possible to enhance productivity and increase nitrogen depuration in both systems. The use of centrate is confirmed as a useful method for reducing microalgae production costs and for increasing process sustainability. Consequently, it is demonstrated that for the production of microalgae biomass, centrate from wastewater treatment plants can be used as the exclusive nutrient source, achieving high productivities and nutrient removal rates if using suitable strains and if the system is operated adequately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.