Abstract

Plasmids in Rhizobium spp. are relatively large, numerous, and difficult to cure. Except for the symbiotic plasmid, little is known about their functions. The primary objective of our investigation was to obtain plasmid-cured derivatives of Rhizobium leguminosarum bv. trifolii by using a direct selection system and to determine changes in the phenotype of the cured strains. Three strains of rhizobia were utilized that contained three, four, and five plasmids. Phenotypic effects observed after curing of plasmids indicated that the plasmids were involved in the utilization of adonitol, arabinose, catechol, glycerol, inositol, lactose, malate, rhamnose, and sorbitol and also influenced motility, lipopolysaccharide production, and utilization of nitrate. Specific staining of 26 enzymes electrophoretically separated on starch gels indicated that superoxide dismutase, hexokinase, and carbamate kinase activities were affected by curing of plasmids. Curing of cryptic plasmids also influenced nodulation and growth of plants on nitrogen-deficient media. The alteration in the ability to utilize various substrates after curing of plasmids suggests that the plasmids may encode genes that contribute significantly to the saprophytic competence of rhizobia in soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.