Abstract

The present study investigated the potential use of blackmouth catshark (Galeus melastomus) skins for gelatin production by employing a combined alkaline and acidic process. The yield of dry gelatin was relatively high (13.95%), showing a high protein content (87.80%), but low moisture (10.64%), ash (1.34%) and lipid (0.03%) contents, on a wet weight basis. Fish skin gelatin showed better color properties (>L*, <+b* values) than porcine skin gelatin and exhibited similar gel strength (315.4 g) and higher viscosity (5.90 cP) than the latter (p < 0.05). Although the electrophoretic study revealed that fish skin gelatin was degraded to a lesser extent than its mammalian counterpart, the resulting fish skin gelatin gels melted at a significantly lower temperature (Tm = 21.5 °C), whereas the reverse process (i.e., gelling) also occurred at a lower temperature (Ts = 10.6 °C) and required more time (ts = 29.5 min) compared to porcine skin gelatin gels (Tm = 30.4 °C, Ts = 19.4 °C and ts = 20.7 min). These differences were attributed to the different imino acid content, which was greater in mammalian gelatin (p < 0.05). The results suggested that the skins from blackmouth catshark can be potentially used as an alternative raw material for gelatin production, which will fill the needs of more diverse cultures that do not consume pork- or cow-related products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call