Abstract

Cattle (n = 303) were visually selected from four feed yards to represent six phenotypes (English [EN; n = 50], 3/4 English-1/4 Brahman [ENB; n = 52], 1/2 English-1/2 Exotic [ENEX; n = 56], 1/2 English-1/4 Exotic-1/4 Brahman [ENEXB; n = 47], 3/4 Exotic-1/4 Brahman [EXB; n = 49], and 1/2 Exotic-1/4 English-1/4 Brahman [EXENB; n = 49]). Carcasses were processed at a commercial beef packing facility, and strip loins were collected after 48-h chilling. Strip loins were aged for 14 d at 2 degrees C and frozen at -20 degrees C for 3 to 5 d before three 2.5-cm-thick steaks were cut for Warner-Bratzler shear force (WBSF) determinations and sensory evaluations. Phenotype EN had the highest (P < 0.05) adjusted fat thickness, and EXB had adjusted fat thickness that was lower (P < 0.05) than all other phenotypes except EXENB. Carcasses of EN and ENB had smaller (P < 0.05) longissimus muscle areas than phenotypes ENEX, EXB, and EXENB. Phenotype EN produced carcasses with the highest (P < 0.05) numerical yield grade, whereas carcasses originating from phenotype EXB had lower (P < 0.05) numerical yield grades than all other phenotypes except ENEX. No differences (P > 0.05) were found among phenotypes for mean WBSF values or sensory panel ratings for initial and sustained tenderness, initial and sustained juiciness, beef flavor characteristics, and overall mouthfeel. More than 90% of steaks from carcasses of all phenotypes had WBSF values less than 3.6 kg when cooked to an internal cooked temperature of 70 degrees C. Results from this study indicated that all phenotypes represented in this study could be managed to produce tender beef.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call