Abstract
Biodegradable poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) triblock copolymer could potentially be used in bioplastic applications because it is more flexible than PLLA. However, investigations into modifying PLLA-PEG-PLLA with effective fillers are still required. In this work, bamboo biochar (BC) was used as an eco-friendly and cost-effective filler for the flexible PLLA-PEG-PLLA. The influences of BC addition on crystallization properties, thermal stability, hydrophilicity, and mechanical properties of the PLLA-PEG-PLLA were explored and compared to those of the PLLA. The PLLA-PEG-PLLA matrix and BC filler were found to have strong interfacial adhesion and good phase compatibility, while the PLLA/BC composites displayed weak interfacial adhesion and poor phase compatibility. For the PLLA-PEG-PLLA, the addition of BC induced a nucleation effect that was characterized by a decrease in the cold crystallization temperature from 76 to 71–75 °C and an increase in the crystallinity from 18.6 to 21.8–24.0%; however, this effect was not observed for the PLLA. When compared to pure PLLA-PEG-PLLA, the PLLA-PEG-PLLA/BC composites displayed greater thermal stability, tensile stress, and Young’s modulus. Temperature at maximum decomposition rate (Td,max) of PLLA end-blocks increased from 315 to 319–342 °C. Ultimate tensile stress of PLLA-PEG-PLLA matrix improved from 14.5 to 16.2–22.6 MPa and Young’s modulus increased from 220 to 280–340 MPa. Based on the findings, the crystallizability, thermal stability, and mechanical properties of the flexible PLLA-PEG-PLLA bioplastic were all enhanced by the use of BC as a multi-functional filler.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.