Abstract

AbstractBiorational alternatives are gaining increased attention for weed control because of concerns related to pesticide usage and dwindling numbers of labeled products, particularly for minor‐use crops. Allelopathy offers potential for biorational weed control through the production and release of allelochemics from leaves, flowers, seeds, stems, and roots of living or decomposing plant materials. Under appropriate conditions, allelochemics may be released in quantities suppressive to developing weed seedlings. Allelochemics often exhibit selectivity, similar to synthetic herbicides. Two main approaches have been investigated for allelopathic weed suppression. One is use of living rotational crops or mulches that interfere with the growth of surrounding weeds [e.g., tall red fescue, Festuca arundinacea Schreb.; creeping red fescue, F. rubra L. subsp. commutata; asparagus, Asparagus officinalis L. var. altilis); sorghum, Sorghum bicolor (L.) Moench; alfalfa, Medicago sativa L.; black mustard, Brassica nigra (L.) Koch; and oat, Avena sativa L.]. Attempts to select germplasm with enhanced suppressive ability have been limited. The second is use of cover crop residues or living mulches to suppress weed growth for variable lengths of time (e.g., winter rye, Secale cereale L.; winter wheat, Triticum aestivum L.; and sorghum). Cover crop residues may selectively provide weed suppression through their physical presence on the soil surface and by release of allelochemics or microbially altered allelochemics. The ability to understand the physiological basis for allelopathy in a crop plant may allow the weed scientist or ecologist to work closely with molecular biologists or traditional plant breeders to selectively enhance the traits responsible for weed suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.