Abstract

The utilization of seismic barriers for protection against the hazardous impact of natural or technogenic waves is an extremely promising emerging technology to secure buildings, structures and entire areas against earthquake-generated seismic waves, high-speed-transport-induced vibrations, etc. The current research is targeted at studying the effect of seismic-barrier shape on the reduction of seismic-wave magnitudes within the protected region. The analytical solution of Lamb’s problem was used to verify the adopted numerical approach. It was demonstrated that the addition of complementary geometric features to a simple barrier shape provides the possibility of significantly increasing the resulting seismic protection. A simple genetic algorithm was employed to evaluate the nontrivial but extremely effective geometry of the seismic barrier. The developed approach can be used in various problems requiring optimization of non-parameterizable geometric shapes. The applicability of genetic algorithms and other generative algorithms to discover optimal (or close to optimal) geometric configurations for the essentially multiscale problems of the interaction of mechanical waves with inclusions is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call