Abstract
Purpose: Weather conditions around solar photovoltaic (PV) systems have a direct effect on the amount of generated power. Therefore, highly correlated meteorological environmental variables are used to accurately predict the power generation capacity of PV systems. However, it is difficult to install observation equipment due to high installation costs and maintenance. Therefore, public data from the Korea Meteorological Administration are often used. However, uncertainty may arise due to the large distance between the stations of the Korea Meteorological Administration. Therefore, in this study, inverse distance weighting (IDW) was used to predict the solar radiation of an arbitrary area to improve the uncertainty caused by the large distance between the meteorological stations. Method: In this study, IDW was used as a spatial statistical technique to predict the monthly average of daily accumulation solar radiation in South Korea. Moreover, four cases of the automated synoptic observing system (ASOS) were used as study cases to evaluate the prediction technology. The actual solar radiation observed and the predicted solar radiation was compared and analyzed in each study case, and the accuracy was evaluated as an indicator of the mean absolute percentage error (MAPE). Additionally, the MAPE was compared with the prediction results of the multiple regression model. Result: Although the results differ for each case, the average MAPE was approximately 11.06% using the inverse distance weighting interpolation method, and the predicted value by the multiple regression method yielded an average MAPE of approximately 16.12%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.