Abstract

Current communication networks support a variety of applications with different quality of service (QoS) requirements which compete for its resources. This continuously increasing competition highlights the necessity for more efficient and fair resource allocation. Current Network Utility Maximization (NUM) framework fails to achieve this target and alternative approaches cannot operate in networks that consist of wireless links. This paper presents a NUM framework for wireless networks that shares resources according to the utility proportional fairness policy. This policy is shown to prevent rate oscillations in the resource allocation process, allocate resources in a more fair manner among different types of applications and lead to the calculation of closed form solutions for the optimal rate allocation function. Based on this policy, a distributed rate and power allocation algorithm is proposed that gives priority to applications with greater need of resources. Finally, numerical results on the performance of the proposed algorithm are presented and compared against other approaches in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.