Abstract

The present work shows the hybrid optimization approach by the use of utility embedded Taguchi philosophy to optimize machining constraints with multiple characteristics in machining (milling) operation of graphite-reinforced polymer composite (GRPC). Taguchi-based L16 orthogonal array has been used to perform milling operation. Vertical milling center machine has been used for the milling operation with input factor, speed (S), feed rate, depth of cut (DoC) and weight percentage (wt.) of graphite. The output response considered is metal removal rate, thrust, torque and surface roughness (Ra). The purpose of using this technique is to convert the multi-response to single response function (U) finally optimized by Taguchi method. In utility theory, the initial step is to find the preference number and then overall utility. From this study, it has been proven that the utility theory based on Taguchi method has accomplished the effective milling environments in order to minimize thrust (T), torque (TR) and surface roughness (Ra) during machining. This technique has been suited for off-line quality control of the product development as well as mass production shapes. Utility theory-based Taguchi method has considered optimizing the multiple responses simultaneously, which results in the predicted S/N ratio value of 17.4111, the mean value is 6.65345, and most favorable machining value is speed 500 mm, feed rate 25 mm/rev., depth of cut −1.5 mm and weight percentage 40%, respectively. This approach can be forwarded for quality monitoring (offline/online) of manufacturing industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.