Abstract

The six-minute walk test (6MWT) is a simple test that is widely used to assess functional exercise capacity in patients with idiopathic pulmonary fibrosis (IPF). Patients with IPF have reduced exercise capacity due to a number of factors, such as impaired respiratory mechanics and circulatory problems. As a self-paced and usually submaximal exercise test, the 6MWT reflects the exercise level of everyday activities. Variables measured during the 6MWT, such as six-minute walk distance (6MWD) and desaturation, are strong predictors of mortality in patients with IPF. However, the results of a 6MWT are affected by numerous factors, including age, body size, comorbidities and the use of supplemental oxygen during the test, and these need to be borne in mind when interpreting the results of individual and serial tests. Clinical studies, including trials of potential therapies for IPF, have differed in the methodology used to implement the 6MWT, hindering the comparison of results across studies. In this review, I describe the utility of the 6MWT in patients with IPF and provide recommendations for standardisation of the test for use both in clinical practice and research. A brief video

Highlights

  • The 6-min walk test (6MWT) is a practical and objective measure of functional exercise capacity [1, 2]

  • Variables measured during the 6MWT, such as 6MWD and desaturation, are strong predictors of mortality in patients with idiopathic pulmonary fibrosis (IPF)

  • As a global measure of exercise capacity, the results of a 6MWT are affected by numerous factors, including age, body size and comorbidities, and these need to be taken into account in the interpretation of the results

Read more

Summary

Background

The 6-min walk test (6MWT) is a practical and objective measure of functional exercise capacity [1, 2]. In a study investigating the mechanisms of gas exchange impairment in patients with IPF, patients at rest had moderate ventilation/perfusion (VA/Q) mismatching, with 4% of blood flow perfusing poorly ventilated lung units and 2% of blood perfusing completely unventilated lung units. Together these represented 81% of the alveolar-arterial oxygen (A-a) gradient.

Limitations
Conclusions
Findings
ATS Committee on Proficiency Standards for Clinical Pulmonary Function
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.