Abstract

Four simple, quick and sensitive methods are described for the spectrophotometric determination of gatifloxacin. The methods are based on the reaction of gatifloxacin as n-electron donor with 7,7,8,8-tetracyanoquinodimethane (TCNQ); 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ); chloranilic acid (CLA) and p-chloranil (CL) as pi-acceptors to give highly colored complex species. The colored products are quantitated spectrophotometrically at 460, 841, 530 and 545 nm for DDQ, TCNQ, CLA and CL, respectively. Optimization of the different experimental conditions is described. Beer's law is obeyed in the concentration ranges 5-60, 1.5-18, 30-360 and 20-240 microg ml(-1) of gatifloxacin, but for more accurate analysis, Ringbom optimum concentration range was found to be 7.5-55, 3-16, 35-350 and 25-230 microg ml(-1) of gatifloxacin for DDQ, TCNQ, CLA and CL, respectively. The limits of detection and quantification were calculated and the relative standard deviations for different concentrations of gatifloxacin using various acceptors were <1.28%. The association constants of 1 : 1 complexes and standard free energy changes using Benesi-Hildebrand plots were studied. The proposed methods were successfully applied to the determination of gatifloxacin in pharmaceutical dosage forms without interference from common additives encountered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.