Abstract

The present paper proposes a modeling and simulation strategy for the prediction of pharmacokinetics (PK) of drug candidates by using currently available in silico and in vitro based prediction tools for absorption, distribution, metabolism and excretion (ADME). These methods can be used to estimate specific ADME parameters (such as rate and extent of absorption into portal vein, volume of distribution, metabolic clearance in the liver). They can also be part of a physiologically based pharmacokinetic (PBPK) model to simulate concentration–time profiles in tissues and plasma resulting from the overall PK after intravenous or oral administration. Since the ADME prediction tools are built only on commonly generated in silico and in vitro data, they can be applied already in early drug discovery, prior to any in vivo study. With the suggested methodology, the following advantages of the mechanistic PBPK modeling framework can now be utilized to explore potential clinical candidates already in drug discovery: (i) prediction of plasma (blood) and tissue PK of drug candidates prior to in vivo experiments, (ii) supporting a better mechanistic understanding of PK properties, as well as helping the development of more rationale PK-PD relationships from tissue kinetic data predicted, and hence facilitating a more rational decision during clinical candidate selection, and (iii) the extrapolation across species, routes of administration and dose levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.