Abstract

126 Background: To determine the performance characteristics of urinary PCA3 andTMPRSS2:ERG (T2:ERG) in a racially diverse group of men. Methods: Following IRB approval, from 2013-2015, post digital rectal exam (DRE) urine was prospectively collected in patients without known prostate cancer (PCa), prior to biopsy. PCA3 and T2:ERG RNA copies were quantified and normalized to PSA mRNA copies using Progensa assay (Hologic, San Diego, CA). Prediction models for PCa and high-grade PCa were created using standard of care (SOC) variables (age, race, family history of PCa, prior prostate biopsy and abnormal DRE) plus PSA. Decision Curve Analysis was performed to compare the net benefit of using SOC, plus PSA, with the addition of PCA3 and T2:ERG. Results: Of 304 patients, 182 (60%) were AA; 139(46%) were diagnosed with PCa (69% AA). PCA3 and T2:ERG scores were greater in men with PCa, ≥ 3 cores, ≥ 33.3% cores, > 50% involvement of greatest biopsy core and Epstein significant PCa (p-values < 0.04). PCA3 added to the SOC plus PSA model for the detection of any PCa in the overall cohort (0.747 vs 0.677; p < 0.0001), in AA only (0.711 vs 0.638; p = 0.0002) and non-AA (0.781 vs 0.732; p = 0.0016). PCA3 added to the model for the prediction of high-grade PCa for the overall cohort (0.804 vs 0.78; p = 0.0002) and AA only (0.759 vs 0.717; p = 0.0003) but not non-AA. Decision curve analysis demonstrated significant net benefit with the addition of PCA3 compared with SOC plus PSA. For AA, T2:ERG did not improve concordance statistics for the detection any or high-grade PCa. Conclusions: For AA, urinary PCA3 improves the ability to predict the presence of any and high-grade PCa. However for this population, T2:ERG urinary assay does not add significantly to standard detection and risk stratification tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call