Abstract
To inform cost-effective monitoring of offshore geological storage of carbon dioxide (CO2), a unique field experiment, designed to simulate leakage of CO2 from a sub-seafloor storage reservoir, was carried out in the central North Sea. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor) for 11 days at flow rates between 6 and 143 kg d-1. A set of natural, inherent tracers (13C, 18O) of injected CO2 and added, non-toxic tracer gases (octafluoropropane, sulfur hexafluoride, krypton, methane) were used to test their applicability for CO2 leakage attribution and quantification in the marine environment. All tracers except 18O were capable of attributing the CO2 source. Tracer analyses indicate that CO2 dissolution in sediment pore waters ranged from 35 % at the lowest injection rate to 41% at the highest injection rate. Direct measurements of gas released from the sediment into the water column suggest that 22 % to 48 % of the injected CO2 exited the seafloor at, respectively, the lowest and the highest injection rate. The remainder of injected CO2 accumulated in gas pockets in the sediment. The methodologies can be used to rapidly confirm the source of leaking CO2 once seabed samples are retrieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.