Abstract

Objective Primary intraocular lymphoma, a non-Hodgkin’s lymphoma, is a primary central nervous system lymphoma (PCNSL). Diagnosis is usually made by identifying malignant, large B lymphocytes in the vitreous, eye, brain, and cerebral spinal fluid; however, these cells are few, friable, and difficult to recognize. Recently, clonal heavy chain immunoglobulin (IgH) gene rearrangement and bcl-2 gene translocation have been reported in systemic B-cell lymphoma and are used for the detection of malignant cells and in making a diagnosis. The authors investigated the molecular changes in three eyes and a chorioretinal biopsy specimen of four patients with PCNSL. Design Human tissue study. Materials Five ocular specimens of PCNSL were collected. Intervention The first patient had a diagnostic enucleation of the left eye. The second patient underwent diagnostic chorioretinal biopsy. In the third case, a pair of autopsied eyes with reactive lymphoplasmacytic infiltrates of a patient with acquired immune deficiency syndrome (AIDS) were studied. In the fourth case, an enucleated eye of a patient with AIDS-associated lymphoma was sampled. Main outcome measures The bcl-2 and IgH genes of the lymphoma cells from routine, paraffin-embedded, formaldehyde-fixed, or frozen histologic tissue sections were analyzed using microdissection and polymerase chain reaction (PCR) technique. Results Lymphoma cells obtained from the above four cases showed IgH rearrangement gene in the third framework of the V H region. Bcl-2-associated translocation also was detected in three cases (cases 1, 2, and 4). Conclusion Rearrangement of the IgH gene can serve as a molecular marker for PCNSL. Microdissection allows for procurement and analysis of specific, selected, minute cell populations that are obtained from histologic sections of the complex, heterogeneous tissue. Translocation of IgH and bcl-2, the apoptotic ”survival” signal and proto-oncogene, could contribute to the pathogenesis of PCNSL. The combination of microdissection and PCR is a powerful tool for studies of small lesions and cell populations and for understanding disease mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call