Abstract

AbstractThere have been significant advancements in the electrosynthesis of fuels and organic molecules, making it an increasingly sustainable and cost‐effective alternative to traditional chemical redox reagents. Early versions of these systems faced challenges in chemoselectivity due to high applied overpotentials, which have been mitigated with the introduction of molecular electrocatalysts, like metal salens (MSalens). These MSalens reduce the required overpotentials, increase turnover numbers (TON), and have simple modularity within their ligand structure allowing for tunable selectivity. While these MSalen electrocatalysts are typically used homogeneously for engineering simplicity, downstream separations are often costly and time‐consuming. Immobilization of MSalens addresses these issues by enabling synthesis at lower potentials, achieving high selectivity, and facilitating straightforward separations. This review explores the application of MSalens in electrosynthesis and immobilized molecular electrocatalysts in organic electrosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.