Abstract

This study investigated the use of HWY hairless rats to predict human plasma concentrations of drugs following dermal application.Utilizing a deconvolution method, pharmacokinetic parameters (e.g. in vivo absorption rates) were determined for six transdermal drugs in hairless rats. Obtained data were used to simulate the human plasma concentration-time profiles of transdermal drugs, which were then compared with clinical data in humans. Because hairless rats have lower hair follicle density than do humans, the impact of hair follicle density on skin permeability to hydrophilic compounds was also evaluated.Pharmacokinetic parameters showed low intra-individual variability in hairless rats. Simulated concentration profiles for compounds with logarithm of the octanol–water partition coefficient exceeding two were comparable to clinical data, but simulated concentration profiles for hydrophilic compounds (i.e. bisoprolol and nicotine) at maximum concentration differed from clinical data by more than two-fold. Finally, in vitro permeability to bisoprolol and nicotine was higher in human skin than in hairless rat skin, but hair follicle plugging reduced human skin permeability.In vivo skin absorption data from HWY hairless rats help to predict human concentration profiles for lipophilic compounds. However, the data underestimate human absorption of hydrophilic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.