Abstract
Thermoplastic copolyesters (TPCs) are important structural components in countless high performance applications that require excellent thermal stability and outstanding mechanical integrity. Segmented multiblock architectures are often employed for the most demanding applications, in which semicrystalline segments of poly(butylene terephthalate) (PBT) are combined with various low T g soft blocks. These segmented copolymers are nearly always synthesized from pristine feedstocks that are derived from fossil-fuel sources. In this work, we show a straightforward, one-pot synthetic approach to prepare TPCs starting from high-molar mass poly(ethylene terephthalate) recyclate (rPET) combined with a hydrophobic fatty acid dimer diol flexible segment. Transesterification is exploited to create a multiblock architecture. The high molar mass and segment distribution are elucidated by detailed size-exclusion chromatography and proton and carbon nuclear magnetic resonance spectroscopy. It is also shown that rPET can be chemically converted to PBT through a molecular exchange, in which the ethylene glycol is substituted by introducing 1,4-butane diol. A series of copolymers with various compositions was prepared with either PET or PBT segments and the final thermal properties and mechanical performance is compared between the two different constructs. Ultimately, PBT-based TPCs crystallize faster and exhibit a higher modulus over the range of explored compositions, making them ideal for applications that require injection molding. This represents an ideal, sustainable approach to making conventional TPCs, utilizing recyclate and biobased components to produce high performance polymer constructs via an easily accessible upcycling route.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.