Abstract

Presented in this article is a tumor-mimic model that allows the evaluation, before clinical trials, of the targeting accuracy of a high intensity focused ultrasound (HIFU) device for the treatment of the liver. The tumor-mimic models are made by injecting a warm solution that polymerizes in hepatic tissue and forms a 1 cm discrete lesion that is detectable by ultrasound imaging and gross pathology. First, the acoustical characteristics of the tumor-mimics model were measured in order to determine if this model could be used as a target for the evaluation of the accuracy of HIFU treatments without modifying HIFU lesions in terms of size, shape and homogeneity. On average (n = 10), the attenuation was 0.39 ± 0.05 dB.cm −1 at 1 MHz, the ultrasound propagation velocity was 1523 ± 1 m.s −1 and the acoustic impedance was 1.84 ± 0.00 MRayls. Next, the tumor-mimic models were used in vitro in order to verify, at a preclinical stage, that lesions created by HIFU devices guided by ultrasound imaging are properly positioned in tissues. The HIFU device used in this study is a 256-element phased-array toroid transducer working at a frequency of 3 MHz with an integrated ultrasound imaging probe working at a frequency of 7.5 MHz. An initial series of in vitro experiments has shown that there is no significant difference in the dimensions of the HIFU lesions created in the liver with or without tumor-mimic models ( p = 0.3049 and p = 0.8796 for the diameter and depth, respectively). A second in vitro study showed that HIFU treatments performed on five tumor-mimics with safety margins of at least 1 mm were properly positioned. The margins obtained were on average 9.3 ± 2.7 mm (min. 3.0 - max. 20.0 mm). This article presents in vitro evidence that these tumor-mimics are identifiable by ultrasound imaging, they do not modify the geometry of HIFU lesions and, thus, they constitute a viable model of tumor-mimics indicated for HIFU therapy. (E-mail: apoutou.ndjin@inserm.fr)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.