Abstract

The development of methods for predicting NMR chemical shifts with high accuracy and speed is increasingly allowing use of these abundant, readily accessible measurements in determining the structure and dynamics of proteins. For nucleic acids, however, despite the availability of semiempirical methods for predicting (1)H chemical shifts, their use in determining the structure and dynamics has not yet been examined. Here, we show that (1)H chemical shifts offer powerful restraints for RNA structure determination, allowing discrimination of native structure from non-native states to within 2-4 Å, and <3 Å when highly flexible residues are ignored. Theoretical simulations shows that although (1)H chemical shifts can provide valuable information for constructing RNA dynamic ensembles, large uncertainties in the chemical shift predictions and inherent degeneracies lead to higher uncertainties as compared to residual dipolar couplings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.