Abstract

PurposeThe aim of present study was to investigate the efficiency of 18F-FDG uptake in predicting major pathological response (MPR) in resectable non-small cell lung cancer (NSCLC) patients with neoadjuvant immunotherapy. MethodsA total of 104 patients with stage I-IIIB NSCLC were retrospectively derived from National Cancer Center of China, of which 36 cases received immune checkpoint inhibitors (ICIs) monotherapy (I-M) and 68 cases with ICI combination therapy (I-C). 18F-FDG PET-CT scans were performed at baseline and after neoadjuvant therapy (NAT). Receiver‐operating characteristic (ROC) curve analyses were conducted and area under ROC curve (AUC) was calculated for biomarkers including maximum standardized uptake value (SUVmax), inflammatory biomarkers, tumor mutation burden (TMB), PD-L1 tumor proportion score (TPS) and iRECIST. ResultsFifty-four resected NSCLC tumors achieved MPR (51.9%, 54/104). In both neoadjuvant I-M and I-C cohorts, post-NAT SUVmax and the percentage changes of SUVmax (ΔSUVmax%) were significantly lower in the patients with MPR versus non-MPR (p < 0.01), and were also negatively correlated with the degree of pathological regression (p < 0.01). The AUC of ΔSUVmax% for predicting MPR was respectively 1.00 (95% CI: 1.00–1.00) in neoadjuvant I-M cohort and 0.94 (95% CI: 0.86–1.00) in I-C cohort. Baseline SUVmax had a statistical prediction value for MPR only in I-M cohort, with an AUC up to 0.76 at the threshold of 17.0. ΔSUVmax% showed an obvious advantage in MPR prediction over inflammatory biomarkers, TMB, PD-L1 TPS and iRECIST. Conclusion18F-FDG uptake can predict MPR in NSCLC patients with neoadjuvant immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call