Abstract

We study a stochastic network that consists of two servers shared by two classes of jobs. Class 1 jobs require a concurrent occupancy of both servers while class 2 jobs use only one server. The traffic intensity is such that both servers are bottlenecks, meaning the service capacity is equal to the offered workload. The real-time allocation of the service capacity among the job classes takes the form of a solution to an optimization problem that maximizes a utility function. We derive the diffusion limit of the network and establish its asymptotic optimality. In particular, we identify a cost objective associated with the utility function and show that it is minimized at the diffusion limit by the utility-maximizing allocation within a broad class of “fair” allocation schemes. The model also highlights the key issues involved in multiple bottlenecks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.