Abstract
To choose a suitable multiwinner voting rule is a hard and ambiguous task. Depending on the context, it varies widely what constitutes the choice of an “optimal” subset of alternatives. In this paper, we provide a quantitative analysis of multiwinner voting rules using methods from the theory of approximation algorithms—we estimate how well multiwinner rules approximate two extreme objectives: a representation criterion defined via the Approval Chamberlin–Courant rule and a utilitarian criterion defined via Multiwinner Approval Voting. With both theoretical and experimental methods, we classify multiwinner rules in terms of their quantitative alignment with these two opposing objectives. Our results provide fundamental information about the nature of multiwinner rules and, in particular, about the necessary tradeoffs when choosing such a rule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.