Abstract

To describe the rationale for investigating the dopaminergic system in patients with melancholia by applying molecular biological (notably, in situ hybridisation) and histopathological techniques in postmortem brain tissue. Relevant advances in the functional neuroanatomy of frontostriatal circuits, as well as insights from clinical neuroimaging studies in primary and secondary depressive disorders, are presented. These are integrated with developments in the pharmacological and molecular characteristics of dopamine receptor subtypes and recognition of their selective anatomical distribution. Converging data from the basic and clinical neurosciences suggest that the pathophysiology of depressive disorders characterised by psychomotor phenomena, such as melancholia, may involve dysregulation of dopaminergic mechanisms within complex frontostriatal circuits. The key feature of in situ hybridisation is its capacity to test for variations in the functional components of designated biochemical systems within highly specific anatomical regions. We utilise this approach, in combination with relevant histopathological techniques, to test the structural and functional integrity of the dopaminergic system within key fronto-striatal circuits in patients who had exhibited psychomotor phenomena. The same approach can also be used to study the integrity of other relevant biochemical systems, such as the serotoninergic and noradrenergic systems, in patients with other mood disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.