Abstract

Electron transfer and redox chemistry drives life and Biology can provide inspiration for the design of sustainable fuel catalysts that achieve highly active and selective small molecule transformations. In particular, the Parkin group are interested in hydrogenases,1 biological H2-producing enzymes, and lytic polysaccharide monooxygenases (LPMOs),2, 3 enzymes that breakdown cellulose. We seek to understand how the rate and energetics of electron transfer controls catalysis in such enzymes;4 to do this we collaborate with the Gavaghan and Bond groups to develop more powerful bioelectrochemical methodologies.5 This talk will describe our most recent efforts to integrate sinusoidal voltammetry into our enzyme-electrochemistry toolkit.6, 7 The technique offers advantages in terms of simulation speed, which in turn enables the powerful application of Bayesian statistical analysis to visualise the uncertainty in the modelling approach. However, we still rely on large amplitude Fourier transform voltammetry and direct current methodologies to visualise the Faradaic current and readily define redox reaction parameter bounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call