Abstract

Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; n = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call