Abstract

Low fecundity in chondrichthyans makes them extremely susceptible to fishing, so understanding the various reproductive strategies in this group is vital for management. Knowledge of the uterine fluid (UF) composition throughout gestation is fundamental to this understanding, yet is restricted to a few species. This study focussed on the UF composition of the wobbegong (Orectolobus ornatus), which inhabits coastal waters off eastern Australia. The UF was quantified throughout pregnancy. Fluids surrounding uterine eggs had a complex composition, with mean urea (98.48 mmol L–1), sodium (560.25 mmol L–1) and potassium (13.93 mmol L–1) concentrations significantly greater than those in seawater. A change in composition, from complex to simple, occurred after 3–4 months gestation. Major electrolyte concentrations then resembled seawater for the remainder of gestation, suggesting the flushing of the uteri with seawater and evidenced by fluctuating low levels of urea. The gestation period reflected the time for metabolism of yolk stores, osmotic and ionic adjustment, development of functioning immunological systems and prevention of external yolk sac damage. Our study is the first documentation of UF composition for a wobbegong shark and increases understanding of its reproductive biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call