Abstract

Toward the goal of detecting preterm birth by characterizing events in the uterine electromyogram (EMG), we propose a method of detection and classification of events in this signal. Uterine EMG is considered as a nonstationary signal and our approach consists of assuming piecewise stationarity and using a dynamic change detector with no a priori knowledge of the parameters of the hypotheses on the process state to be detected. The detection approach is based on the dynamic cumulative sum (DCS) of the local generalized likelihood ratios associated with a multiscale decomposition using wavelet transform. This combination of DCS and multiscale decomposition was shown to be very efficient for detection of both frequency and energy changes. An unsupervised classification based on the comparison between variance-covariance matrices computed from selected scales of the decomposition was implemented after detection. Finally a class labeling based on neural networks was developed. This algorithm of detection-classification-labeling gives satisfactory results on uterine EMG: in most cases more than 80% of the events are correctly detected and classified whatever the term of gestation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.