Abstract

AimsPolycystic ovarian syndrome (PCOS) is a reproductive, endocrine and metabolic disorder. Less is known about the mechanism of its effect on uterine function and therapeutic potential of melatonin. Our aim was to evaluate uterine dysfunction(s) in letrozole induced PCOS and its possible rectification by melatonin. Main methodsAdult female golden hamsters were divided into groups of Control (C), Melatonin (M; 1 mg/kg b.w.), Letrozole (L; 3 mg/kg b.w.) and combination of Letrozole+Melatonin (L + M; 3 mg/kg b.w. + 1 mg/kg b.w.) which were treated for 40 days. Analysis of serum testosterone/estradiol/progesterone/leptin/insulin, uterine histomorphometry, immunohistochemistry for proliferation cell nuclear antigen (PCNA), homeostatic assessment model of insulin resistance (HOMA-IR), western blotting for PCNA, androgen receptor (AR), insulin receptor (InsR), glucose tansporter-4 (GLUT-4), nuclear factor-kappa B (NFκB), cyclooxygenase-2 (COX-2) and biochemical analysis of superoxide dismutase (SOD)/catalase/lipid peroxidation (LPO) were done. Key findingsSerum testosterone, leptin and insulin increased while uterine InsR/GLUT-4 expression decreased in L group indicating metabolic abnormalities. Endometrial hyperplasia, increased expression of PCNA and AR indicated abnormal proliferation in L compared to C. Increased uterine oxidative load (SOD/catalase/LPO) and inflammatory markers NFκB/COX-2 expression in L was responsible for high tissue oxidative stress and inflammation. M administration normalized all the above parameters suggesting its ameliorative effect in L + M group. SignificanceWe report PCOS induced uterine dysfunction in Mesocricetus auratus for the first time. M administration restores uterine functions modulating cellular dynamicity, metabolic status, decreased oxidative and inflammatory load in PCOS hamsters. Therefore, we suggest the therapeutic potential of M against PCOS led uterine abnormalities to restore female fertility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.