Abstract
In this paper, we discuss stochastic comparison of the largest order statistics arising from two sets of dependent distribution‐free random variables with respect to multivariate chain majorization, where the dependency structure can be defined by Archimedean copulas. When a distribution‐free model with possibly two parameter vectors has its matrix of parameters changing to another matrix of parameters in a certain mathematical sense, we obtain the first sample maxima is larger than the second sample maxima with respect to the usual stochastic order, based on certain conditions. Applications of our results for scale proportional reverse hazards model, exponentiated gamma distribution, Gompertz–Makeham distribution, and location‐scale model, are also given. Meanwhile, we provide two numerical examples to illustrate the results established here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.