Abstract

Based on the large-sample normal distribution of the sample log odds ratio and its asymptotic variance from maximum likelihood logistic regression, shortest 95% confidence intervals for the odds ratio are developed. Although the usual confidence interval on the odds ratio is unbiased, the shortest interval is not. That is, while covering the true odds ratio with the stated probability, the shortest interval covers some values below the true odds ratio with higher probability. The upper and lower limits of the shortest interval are shifted to the left of those of the usual interval, with greater shifts in the upper limits. With the log odds model γ + Xβ, in which X is binary, simulation studies showed that the approximate average percent difference in length is 7.4% for n (sample size) = 100, and 3.8% for n = 200. Precise estimates of the covering probabilities of the two types of intervals were obtained from simulation studies, and are compared graphically. For odds ratio estimates greater (less) than one, shortest intervals are more (less) likely to include one than are the usual intervals. The usual intervals are likelihood-based and the shortest intervals are not. The usual intervals have minimum expected length among the class of unbiased intervals. Shortest intervals do not provide important advantages over the usual intervals, which we recommend for practical use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call