Abstract

Non-invasive imaging might assist in the clinical translation of tissue-engineered vascular grafts (TEVG). It can e.g. be used to facilitate the implantation of TEVG, to longitudinally monitor their localization and function, and to provide non-invasive and quantitative feedback on their remodeling and resorption. We here incorporated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles into polyvinylidene fluoride (PVDF)-based textile fibers, and used them to prepare imageable tissue-engineered vascular grafts (iTEVG). The USPIO-labeled scaffold materials were molded with a mixture of fibrin, fibroblasts and smooth muscle cells, and then endothelialized in a bioreactor under physiological flow conditions. The resulting grafts could be sensitively detected using T1-, T2- and T2*-weighted MRI, both during bioreactor cultivation and upon surgical implantation into sheep, in which they were used as an arteriovenous shunt between the carotid artery and the jugular vein. In vivo, the iTEVG were shown to be biocompatible and functional. Post-mortem ex vivo analyses provided evidence for efficient endothelialization and for endogenous neo-vascularization within the biohybrid vessel wall. These findings show that labeling polymer-based textile materials with MR contrast agents is straightforward and safe, and they indicate that such theranostic tissue engineering approaches might be highly useful for improving the production, performance, personalization and translation of biohybrid vascular grafts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.